Control Systems

(Prof. Casella)

Written Exam – July 2nd, 2015

Surname:	
Name:	
Reg. Number:	
	Signature:

Notices:

- This booklet is comprised of 7 sheets Check that it is complete and fill in the cover.
- Write your answers in the blank spaces with short arguments, including only the main steps in the derivation of the results.
- You are not allowed to leave the classroom unless you hand in the exam paper or withdraw from the exam.
- You are not allowed to consult books or lecture notes of any kind.
- Please hand in only this booklet at the end of the exam no loose sheets.
- The clarity and order of your answers will influence how your exam is graded.

With reference to feed-back control systems, explain why the input-output dynamic behaviour of the plant to be controlled is crucial for the system performance. Also explain why, on the other hand, a very precise knowledge of that dynamic behaviour is not required, if the controller is designed properly.

Question 2

Briefly explain why the stability of a linear system with transfer function G(s) is completely determined by its poles. Then, state precisely under which conditions such system will be asymptotically stable, simply stable, or unstable.

Consider a one-dimensional spring-mass mechanical system, in which a body of mass M is connected to the ground by a spring and by a damper, and subject to an external force F. Contrary to a standard spring-mass harmonic oscillator, the spring has a nonlinear force-displacement characteristic, where the force grows more than proportionally to the spring deformation.

The equations describing the system are the following, where x is the body displacement, v is the body velocity, F_s is the spring force, F_d is the damper force, K and x_0 are the spring parameters, and h is the damper friction coefficient.

$$M \ddot{x} = F_s + F_d + F$$
$$F_s = -\frac{K}{x_0^2} x (x^2 + x_0^2)$$
$$F_d = -hv$$

3.1 Write down the state and output equations in standard state-space form, considering F as input and x, v as outputs

3.2 Compute the equilibrium conditions for the system

3.3 Write down the system's linearized equations around a generic equilibrium

3.4 Assuming the equilibrium value of *F* is zero, compute the transfer functions of the system between the deviations of the input ΔF and the deviations of the outputs Δx and Δv .

3.5 Determine under which conditions the system shows an oscillatory behaviour in response to a unit step change of the input ΔF , then plot the qualitative diagrams of the corresponding $\Delta x(t)$ and $\Delta v(t)$.

3.6 Assume now that the equilibrium value of F is no longer zero, but rather that the spring is preloaded by a suitable force value such that the corresponding equilibrium displacement is x_0 . Explain how the plots determined at the previous point change, all other parameters being unchanged.

Considering the following block diagram

4.1 Compute the transfer functions between the inputs *u* and *v* and the output *y*.

4.2 Determine for which values of the parameter K the system shows exponentially diverging oscillations in response to step changes of the inputs.

Consider the following control system, where the unit of time constants is the second:

5.1 Design a PI or PID controller with a bandwidth of 0.003 rad/s and at least 60° phase margin.

5.2 Design a PID controller with the highest bandwidth you can get for a phase margin of 45° , assuming N = 10 for the derivative action.

5.3 Plot the qualitative diagrams of the response of the controlled output y to a step change in the disturbance d for the two controllers designed at points 5.1 and 5.2.

5.4 Determine the asymptotic amplitude of the oscillations of the manipulated variable u corresponding to a disturbance $d = \sin(2t)$ for the two controllers designed at points 5.1 and 5.2.