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Question 1

Define the frequency response of a linear, time-invariant system. Then, state how it can be used to
determine the system response to a sinusoidal input in the time domain.

If the system has transfer function G(s), then the frequency response of the system is the complex
function G(jw), where the real frequency w goes from 0 to infinity.

If the system is  asymptotically stable,  then the asymptotic  response of the system's output to a
sinusoidal input  u(t) = A cos(wt + f) is y(t) = |G(jw)| cos(wt + f + arg(G(jw))).  

Question 2

Explain the phenomenon of integral wind-up in linear controllers and how it can be avoided.

See lecture notes.



Question 3

Consider a thermo-hydraulic system in which a volume V of well-mixed fluid exchanges heat with a
wall that is kept at a constant temperature Tw by some external means. A mass flow rate wi of fluid
at temperature  Ti enters the volume, and a mass flow rate of fluid  wo leaves it. The heat transfer
coefficient between the fluid and the wall is proportional to wo

0.8. It is assumed for simplicity that
the fluid has constant density and that dh = de = c dT.

The equations describing the system are the following, where  M is the constant fluid mass,  T the
fluid temperature, c the constant fluid specific heat capacity, Q the heat flow to the fluid, and wnom

the nominal value of the flow rate:

3.1 Write down the state and output equations in standard state-space form, considering wi and Ti as
inputs, T and Q as outputs

3.2 Compute the equilibrium conditions for the system, assuming wo = wnom 

3.3 Write down the system's linearized equations around the previously found equilibrium
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3.4 Compute the transfer functions of the system between the deviations of the input  DTi and the
deviations of the outputs DT and DQ and write them down in gain / time constant form.

3.5  Plot the qualitative diagrams of the unit  step response of the transfer functions computed at
point 3.4

Standard plots of first-order systems with one negative real pole and  no zeros

3.6 Assume DTi = sin(wt). Determine for which values of w the corresponding oscillations of DT
have an amplitude which is much smaller than the final value of the response to DTi = step(t)

The final value of the step response is  G(0), while the amplitude of the sinusoidal oscillations is
G(jw). The latter is smaller than the former if w >> 1 / t.
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Question 4

Considering the following block diagram

A(s)=
100

s

B(s)=
1

1+s

4.1 Compute the transfer functions between the inputs u and v and the output y.

Y (s)=
K A(s)

1+KA(s)B(s)
U (s)−

K A(s)C (s)
1+KA(s)B (s)

V (s)

Y (s)=
100 K (1+s)

s2+s+100 K
U (s)−

4000 K (1+s )

(s2+s+100 K )(1+10 s+10 s2)
V (s )

4.2 Determine  for  which  values  of  the  parameter  K  the  system shows  damped,  exponentially
decaying oscillations in response to step changes of the inputs. 

In order to show damped, asymptotically decaying oscillations, the transfer functions need to have
complex poles with negative real part, and they need to be asymptotically stable. 

The polynomial 1 + 10s + 10s2 has two negative real roots, so it satisfies the stability requirement,
but cannot produce oscillations. As to the polynomial s2 + s + 100K, asymptotic stability requires
K > 0, while complex poles are obtained if D  < 0 (hence K > 1/400).

Summing up, K > 1/400.
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Question 5

Consider the following control system, where the unit of time constants is the second:

5.1 Design a PI or PID controller with a bandwidth of 0.01 rad/s and at least 50° phase margin.

A PI controller with  Kp = 210-5 and  Ti = 500 has the required crossover frequency and a phase
margin of 62°.

5.2 Plot the qualitative diagrams of the response of the controlled output y to a step change of the set
point y°.

A first approximation is  just  a first-order system response with a time constant of 100 s and a
settling time of 500s. In fact, the right-half-plane zero in G(s) also shows up in the complementary
sensitivity  function,  so  the  step  response  of  y has  a  small  undershoot  at  the  beginning  of  the
transient.
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5.3 Design a feed-forward disturbance compensator for the system. Is there any upper bound to the
bandwidth where the compensator can be effective? 

The ideal disturbance compensator has transfer function:

which cannot be implemented because of the unstable pole. Low-frequency approximations can be
used,  such as  the static  compensator  -3/10.  However,  they can only be effective  in  a  range of
frequencies lower than the frequency of the unstable pole, i.e., 0.1 rad/s.

5.4 How is the dynamic performance of the system affected if the gain of G(s) turns out to be 1000
instead of 500?

The bandwidth is doubled, while the phase margin is reduced to about 51°. The response has now
some well-damped oscillations (the damping coefficient is about 0.5), and the settling time is more
or less the same as before.

5.5 Assume n = sin(10t). Is it possible to modify the controller designed at point 5.1 so that the set
point tracking and the rejection of the disturbance d  is unchanged, but the amplitude of the
oscillations of the manipulated variable u is drastically reduced?

The frequency of the disturbance n is much higher than the crossover, so that the frequency response
function -Q(j10) between n and u can be approximated by just -C(j10) = Kp.

It is  possible  to  meet  the requirement  by adding a  low-pass  filter  to  the controller  so that  the
magnitude  of  C(j10)  is  greatly  reduced,  while  the  phase  and  magnitude  of  C(jw)  are  not
significantly changed.  This  is  possible  by setting  the  frequency of  the  poles  of  the  filter  at  a
frequency  much  higher  than  0.01  but  significantly  less  than  10.  For  example,  the  following
controller reduces the amplitude of the control oscillations by a factor 100, while only reducing the
phase margin by 1° only
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