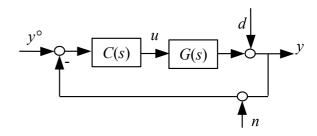
Control Systems

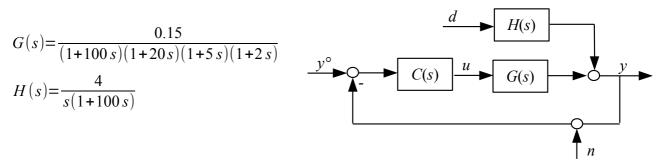
(Prof. Casella)


Final Exam – June 26th, 2015

Surname:	
Name:	
Reg. Number:	
	Signature:

Notices:

- This booklet is comprised of 6 sheets Check that it is complete and fill in the cover.
- Write your answers in the blank spaces with short arguments, including only the main steps in the derivation of the results.
- You are not allowed to leave the classroom unless you hand in the exam paper or withdraw from the exam.
- You are not allowed to consult books or lecture notes of any kind.
- Please hand in only this booklet at the end of the exam no loose sheets.
- The clarity and order of your answers will influence how your exam is graded.

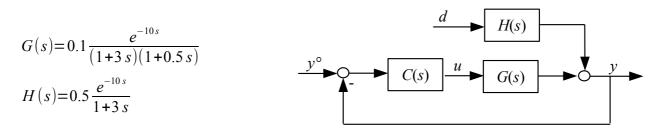

Consider the control system shown in the figure. Define the *control sensitivity* transfer function and explain why is it important to assess the system performance. Finally, explain how to approximate its frequency response assuming that the loop transfer function satisfies the pre-conditions of Bode's criterion.

Question 2

Draw the block diagram of a 2-degrees-of-freedom controller using set-point pre-filtering. Briefly explain the design criteria for the controllers.

Consider the following control system (time constants are given in seconds), where C(s) is a real PID controller with $K_p = 50$, $T_i = 100$, $T_d = 20$, N = 3:

3.1 Compute the steady-state errors corresponding to unit step changes of the set point y° and of the disturbance *d*.


3.2 Compute the crossover frequency and the phase margin of the control system. Then, plot an approximated diagram of the step response of the controlled variable y to a step change of the set point y° .

3.3 Compute the asymptotic amplitudes of the oscillations of the manipulated variable u and of the controlled variable y corresponding to a sinusoidal feed-back disturbance n having unit amplitude and a period of 0.1 seconds.

3.4 Plot an approximated diagram of the response of the controlled variable y to a step change of the disturbance d.

3.5 Explain how the static and dynamic system performance changes if the actual gain of G(s) turns out to be $\frac{1}{2}$ of its design value, using the same controller.

Consider the following control system, where the unit of time constants is the second:

4.1 Design a PI or PID controller with a bandwidth of 0.04 rad/s and a phase margin of at least 60°.

4.2 Design a disturbance compensator to improve the disturbance rejection in the frequency range 0–0.4 rad/s

5.1 Draw the block diagram of a cascaded controller and briefly discuss its design criteria

5.2 Discuss what are the advantages and disadvantages of this control strategy compared to a standard feedback controller applied to the same plant.